Development and Evaluation of Equipment Enhancements for Transient Liquid Phase Bonding (TLPB) and Sintering

V. Rangelov, S. Altenbockum
J. Kleff, C. Weber, H. Oppermann, K. D. Lang

15. June 2017
Automotive 2017, Torino, Italy
Outline

- Introduction to TLPB
- Motivation
- Introduction to bonding equipment
- Equipment and process evaluation
 - Silver sintering
 - Transient Liquid Phase Bonding (TLPB)
Introduction to TLPB

- Process stages of Transient Liquid Phase Bonding:

1. Stage: Interlayer preparation

2. Stage: Interlayer melting and dissolution

3. Stage: Isothermal solidification

4. Stage: Homogenization
Motivation

- Requirements on bonding equipment:
 - pressure uniformity
 - temperature uniformity
 - accuracy of position
 - flexible heat and pressure profile
 - inert and reducing atmosphere
 - complex topography
 - processing of multiple substrates

- new approach combining vacuum reflow soldering system with press unit
Introduction to bonding equipment

Basic idea: Isostatic press using an elastomer membrane
Evaluation of bonding equipment

- Pressure distribution study

Sample distance [mm]: 0.5..4

Sample heights [mm]: 0.5, 1, 1.5, 2, 2.5, 3

Sample size [mm²]: 5 x 30

Working area: Ø 160 mm

Boundary region around the samples
Evaluation of bonding equipment

- Dependence on sample height and applied pressure

 - very slight influence on sample distance and height
 - operation within a wide design diversity possible
Evaluation of bonding equipment

- Processing of complex topographies

- Dummy power module
- 0.3 MPa

- FR4 demo board
- 0.5 MPa

- No need of tooling
- Simultaneous bonding of a batch of assemblies
Evaluation of bonding equipment

- membrane material: FKM vs. VMQ based elastomers

Continuous operation at 300°C

Aging after 8 days at 300°C

- FKM material
- VMQ material

- hardness [shore A]
- weight loss [%]
- thickness change [%]
- hardness change [%]

V. Rangelov, 15.06.2017
Evaluation of bonding equipment

- maintaining of the alignment accuracy

alignment after FC-bonder

alignment after process run in bonding oven
Evaluation of bonding equipment

- lateral displacement after permanent bonding well below 3 μm
- samples transfer manageable
- use of temporal adhesives possible

Cross-section and x-ray image of an encapsulated silicon package for MEMS applications.
Process evaluation - TLPB

- Transient Liquid Phase Bonding for power devices (Sn-Cu)

- void free joint
- interlayer thickness and applied pressure critical
- process time to be adopted
Process evaluation - TLPB

- Uniform TLPB joint across entire device

- oxide reduction over large area

- bending of device neutralised
Process evaluation – Ag sintering

- Low pressure silver sintering

- 3 types of pastes tested: for pressures > 10 MPa, 5 – 10 MPa, and for pressureless sintering

- Pressureless paste showed highest sintering degree at 0.45 MPa
Process evaluation – Ag sintering

- Low pressure silver sintering

 - bonding duration for pressureless paste lowered significantly
 - porosity is similar to conventional pressureless process
Future work

- chip to wafer packaging
- fully automatic handling
- integration with dieplacer
- upscaling
- Cu sintering
Acknowledgments

- my colleagues at ATV Technologie
- our academic partners from Fraunhofer Institute and TU Berlin
- The Federal Ministry for Economic Affairs and Energy for funding
 grant no.: KF3242702ZG4